

Sinong (Simon) Zhan

(+1) 510-599-4662 | SinongZhan2028@u.northwestern.edu | simon-zhan.com | github.com/SimonZhan-code

EDUCATION

Northwestern University <i>PhD in Electrical and Computer Engineering</i>	Evanston, IL Sept. 2023 – Present
University of California, Berkeley <i>Bachelor of Arts in Computer Science and Applied Mathematics</i>	Berkeley, CA Aug. 2018 – Dec. 2022

EXPERIENCE

Applied Scientist Intern <i>Amazon</i>	June 2025 – Sep 2025
	<i>Store Foundation AI Team</i>
<ul style="list-style-type: none">Developed multi-turn conversational agents for Rufus Shopping Assistant using reinforcement learning algorithms.Designed logic-based reward machines for human behavior simulation in LLM agent training pipelines.Contributed to large-scale and customer-facing services, leveraging AWS (EC2/EKS, S3, CloudWatch, etc.).	
Graduate Research Assistant <i>Northwestern University</i>	Sep 2023 – Present
	<i>Advisor: Prof. Qi Zhu</i>
<ul style="list-style-type: none">Designed delay-aware, state-wise safe RL algorithms and constraint-satisfaction toolchains for various embodied Cyber-Physical Systems; publications include L4DC, NeurIPS(Spotlight), and ICML.Designed inverse RL frameworks using generative modeling (GANs, score matching) for stable imitation learning.Built a comprehensive framework to evaluate and improve the safety of embodied AI agents, combining formal safety rules with multi-level testing (semantic, plan, and trajectory) in realistic simulation environments.Explored <i>Lean FRO</i> as a verification back-end for LLM outputs, turning natural-language constraints into theorems and emitting machine-checked certificates for safety and security.	
Undergraduate Researcher <i>University of California, Berkeley</i>	Feb 2022 – April 2023
	<i>Advisor: Prof. Sanjit Seshia</i>
<ul style="list-style-type: none">Developed automated design verification and control synthesis tool-chains for Unmanned Underwater Vehicle.Created SMT-based 3D bin-packing solver for design model checking and automated the whole pipelines.	

PROJECTS

Safe Reinforcement Learning with Barrier Certificate <i>PyTorch, MuJoCo, Optimization</i>	June 2022 – Sep 2024
<ul style="list-style-type: none">Unified RL with formal verification via a bilevel, end-to-end differentiable framework that co-learns controllers and certificates (Barrier/Lyapunov) to enforce hard safety and stability in CPS with partially-unknown dynamics.Introduced generative model based soft barrier functions to encode hard reachability constraints in unknown stochastic environments by jointly learning dynamics and policy with probabilistic safety guarantee.Formulated an end-to-end architecture coupling visual world modeling with probabilistic barrier-certificate learning to achieve safety-aware policy optimization in high-dimensional state spaces.	
Delay-Robust Reinforcement Learning <i>JAX, Isaac Sim, Optimization</i>	Nov 2023 – Present
<ul style="list-style-type: none">Boosted RL under long/strong delays by introducing an auxiliary short-delay value-learning scheme that bootstraps to long delays, reducing sample complexity and improving sample efficiency.Reformulated delayed-observation RL as a variational inference problem and proposed a two-step procedure that achieves consistent delay-robust performance with strong sample-efficiency gains.Bridged offline training and online deployment with delays via a transformer-based belief policy with constraint handling that learns from delay-free logs yet acts delay-robustly at deployment.	
Multi-layer Formal Safety Evaluation for Embodied Agents <i>LLM, Ai2Thor, OmniGibson</i>	March 2025 – Present
<ul style="list-style-type: none">Implemented formal safety rules using temporal logics (LTL, CTL) to enable formal evaluations.Designed a unified framework for multi-level safety evaluation (semantic, plan, trajectory) of embodied agents.Extended <i>VirtualHome</i> and <i>ALFRED</i> tasks with safety constraints to test LLM agents under multi-layer framework.	

TECHNICAL SKILLS

Programming: Python, C/C++, CUDA, Java, LEAN 4, R, MATLAB, Julia, SQL

ML/AI Frameworks: PyTorch, JAX, TensorFlow, Hugging Face, OpenAI Gym, Scikit-learn

Optimization & Tools: Gurobi, CVX, CasADi, Linux, AWS, Docker, Git, Unity3D, Simulink

Research Methods: Reinforcement Learning, Formal Methods, LLM Post-train, Optimization, Statistical Modeling